
ISRAEL JOURNAL OF MATHEMATICS. Vol. 48, No. 4, 1984 

THE DIMENSION CONJECTURE 
FOR POLYDISC ALGEBRAS 

BY 
J. B O U R G A I N  

ABSTRACT 
It is shown that for m ~  n the polydisc algebras A(D m) and A(D") are not 
isomorphic as Banach spaces. More precisely, there is no linear embedding of 
the dual space A(D")*  into A ( D " ) *  for m < n. The invariant is infinite 
dimensional and is based on certain multi-indexed martingales related to those 
considered by Davis et al. [10]. In the one-dimensional case, i.e. for the space 
A(D)*, a finite inequality is proved, implying that A(D~-) * is not finitely 
representable in A (D)*. Extensions to algebras on products of strictly pseudo- 
convex domains are outlined. They imply in particular the non-isomorphism of 
certain algebras in the same number of variables, for instance A (D ~) ~ A (B2 x 
B2). 

0. Introduction 

Denote D ={z  E C :  I z I < 1} the open disc and I1 the unit circle (group) 

equipped with Haar measure. For d = 1,2 . . . . .  let A ( D  d) be the m-polydisc 

algebra, thus the algebra of complex valued continuous functions o n / 5  d which 

are analytic on D d. If A ( D  d) is equipped with the sup-norm, it becomes a 

Banach space. The restriction map A (D d)--> C ( H d ) : f  ~ f 10D~ is an isometric 
embedding, identifying A ( D  d) with the translation invariant space on II d of 

those continuous functions f such that 

. . . .  ka) = if(01 . . . . .  0d)exp ( -  i(k,01 + " "  + kdOd))dO,... / (k,  dO~ 

vanishes whenever infl=i~d k s < O. In the sequel, polydisc algebras will be seen as 

function algebras on the toms. 

The subject of this paper is the isomorphic classification of the Banach spaces 

A(Dd).  The main result, solving the so-called dimension conjecture (see [18], 

section 11) for polydisc algebras, is 
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THEOREM 1. For m ~ n, there is no linear isomorphism between A (D'~) and 

A(D") .  

Partial solutions were obtained by G. M. Henkin [15], B. S. Mitjagin and A. 

Peiczynski [18] and recently the author in [3]. In [3], the non-isomorphism of 
A (D 2) and A (D 3) was shown, using an analysis of the dual space A (D2) *. This 

space can be proved to be isomorphic with the space 

A ( D ) * ~ A ( D ) * ,  

a result used in the argument. It was in fact more generally shown (see [3]) that 

PROPOSITION 1. 

A ( D d ) * = A ( D ) * ~ . . . ( ~ A ( D )  * (d-fold) 

--- xd (• | M) 

where M = M(II) is the usual measure space and 

Xa = L'(FI)/ ,I ,~.  .. ~ L '(H)/ul, (d-fold), 

H~o={f E L '(II); f (n )=O forn <0}. 

Its knowledge can however be omitted in proving Theorem 1. More precisely, 

it will be shown that 

THEOREM 1'. For m < n ,  there is no linear embedding of A(D")*  into 

A (D ")*. 

One may write 

dual C*-algebra ~5 A (D)* ~ A (D2) * 2~-" 2~ A (D~) * 

where A (D ~) is the analytic subspace of C(II~), IP the infinite torus. It is indeed 

known that each space A (D d)* is weakly complete, while A (D*) * is not, since 

the characters 

ei~ ei~ e tok, . . .  

form a complemented /'-sequence in A ( D  ~) (see [6]). 
The analogue of Theorem 1 for HLspaces, thus the non-isomorphism of the 

Banach spaces HI(II ")  and HI(H ~) for m ~ n, was obtained earlier (see [4] and 

[5]). The results stated as Theorem 1 and Theorem 1' are again of infinite 
dimensional nature, and we don't know at this point how to localize them, except 

in two cases listed below as Theorem 2 and Theorem 3. 
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Let X, Y be Banach spaces. Say that X is finitely representable (f.r.) in Y 

provided there is a constant A < ~ and for each finite dimensional subspace E of 

X a subspace F of Y of the same dimension, such that d(E,F)<=A, where 

d (E, F) = inf (11 T II II T--' II; T : E ~ F linear onto-isomorphism} 

is the Banach-Mazur distance. 

TrtEOREM 2 (G. Pisier). A(D)* is not f.r. in the dual of a C*-algebra. 

THEOREM 3. A(D2) * is not f.r. in A(D)*. 

The invariant from which Theorem 1', Theorem 2 and Theorem 3 are derived 

is the behaviour of certain multi-indexed martingales ranging in the space we 

consider. 

Let X be a Banach space. A d-indexed martingale F = F(Ol, . . . ,  0 ~) on 

l-l= I'h •  f~  (Ilj = I-F) will be called a complex martingale of type (d) 

provided it is of the form 

. ~  0 ~ l d ~ �9 l F =  A k,.....k~( , . . . . .  0,, .  Ok,-,)exp " " +  Ok,)) Ok,-~,..., . . ,  (t(O~,+ 
kt, .  =1 

where AK, K = ( k , . . . ,  kd), is an X-valued function. 

Define also 

Say that F is uniformly bounded provided 

II f IIL  = sup IIEk,. ,kd[f] IIL  < 
kl,...,kdEZ+ 

where Ek,.....k~ = EE, @ ' ' "  Q Ek~ are the natural product expectations on 1~. 
Let first X = A (D)* and F the X-valued type-(1) martingale (considered by 

G. Pisier) 

F(O) = ~ ,  AE(O,,..., 0~-,)exp (iOk ) 

where for each k = 1 ,2 , . . .  

l k - ' (  1 . 1 ) 
Ak(O) = ~  ~ 1 + ~ e x p ( t 0 , ) e x p ( - i 2 ' ~ ) + ~ e x p ( -  iO,)exp(i2'~) e x p ( -  i2ksc), 

considered as an element of L 1(~ E II)/H~(~). Since clearly 
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k 

Ek IF](0) = ~ (1 + cos (0, - 2'~)) - 1, 

both members considered again as elements of L ~(~ E II)/H~(~), it follows that 

II Ek IF] tlL~,--< 2. Also, for each k 

~nAk =�89  i2ks c) 

implying p(F) = �89 

By d-fold tensoring F Q . . . @  F a uniformly bounded A (Da)*-valued com- 

plex martingale of type (d) is found for which p(F)> 0. Theorems (1'), (2) and 

(3) are therefore consequences of the following results. 

THEOREM 1". Let F be a uniformly bounded A (Da)*-valued martingale of 
type (d + 1). Then p(F) = O. 

THEOREM 2'. Let X be the dual of a C*-algebra and F an X-valued 
martingale of type (1). Then 

CItEk[Fllk , Vk 

where C is a numerical constant. 

THEOREM Y Let X be the space L '/H~o. If F is an X-valued martingale of type 
(2), then 

where again C is a numerical constant. 

Theorem 2' follows by an iteration argument from the inequality (cf. [10], 
Th.8) due to U. Haagerup (cf. [11], [12]) 

1 fo := % I]a+e IIdO>(llatt2+a:ilbll2) 

(6 = numerical constant), valid for a, b in the dual of a C*-algebra. 
Theorem Y will be shown in the next section and relies on the same methods 

used to prove the cotype 2 property of L2/H~o. 

The proof of Theorem 1" is given in section 2 of this paper. We proceed by 
induction on d. The reasoning relies on sequence arguments and does not 
provide an analogue of Theorems 2' and 3'. In particular, it does not imply the 
non-isomorphism of the H~-spaces H~(D 2) and H=(D3). At this point, the local 
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Banach space theory of the algebras of analytic functions in several variables is 

essentially non-existent. 

A classical invariant to distinguish H~(D)  and H~(D 2) is the so-called ( ip-%) 

ratio defined for a Banach space X by 

kp(X) = sup{ip(u) I u linear operator on X and % ( u )  =< 1}. 

We don't explicitly define the p-summing (resp. p-integral) norm % ( u )  (resp. 

(ip(u)) here, since they will not be used. The reader not familiar with those 

notions may consult [18]. 

Now if X = H~(D),  then 

p2 
k, (X) _-< C (1 < p < ~) 

p - 1  

while kp(X)_- > c~' in case X = H~(D m) and 2 < p  < ~  (see again [18]). Very 

recently, it appeared that in fact kp(X) = ~ whenever p ~  2 for X = H~(D ")  and 

m > 1 ([21). 

The same phenomenon happens for H~-spaces on complex balls in more than 

1-variable (see [7]). Hence the latter invariant becomes useless in a multi- 

variable context. 

Let us recall some further notions for later use. Define N as the subspace of 

those functions h E L ~(H ~) such that the natural martingale difference sequence 

of h = h (r ~ : , . . .  ), i.e., 

Ak[h]=(Ek-Ek_~)[h]  (k = 1 , 2  . . . .  ), 

has the property that for each k the difference Ak [h] is an H~,-function w.r.t, the 

variable ~&. The formal projection on Y( is given by �89 (Id + ill) where 

H = H,.E, + H,=Eg + . . . + H,~ Ek + . . .  

and H is the usual Hilbert-transform acting on L'(H).  Thus H maps real 

functions on real functions and behaves like a martingale transform. 

Its regularity properties follow indeed from those of H using the transference 

formula 

H = l i m { l i m  lim(S.,0-k ~ -, k .. , )} . . . . .  S.,o) Ho(S.~o . S.,o 

where Sk.o is the measure preserving transformation of IU obtained by transla- 

tion ~O~ ~ Ok + nkO. 
In proving Theorem 1", we use a Rudin-Shapiro construction to generate 



294 J. B O U R G A I N  Isr. J. Math.  

bounded analytic functions. Let us recall the method. Let (~tk) be a scalar 

sequence such that E IA~ 12<~ and (3'k) a uniformly bounded sequence of 
functions. Define by induction the pair (ak,/3k) as follows: 

~, = A,y,, /3, = 1, 

/3~+, =/3~ - a~+,a~w+,. 

Then clearly 

I ~+ ,  I~ + I/3k+, 12 = (1 + I X~+,m~+112)(I ~ I s + I t~ I ~) 

and by iteration 

yielding in particular that (ak) is a uniformly bounded sequence of functions. 

1. Proof of Theorem 3' 

Let X = L I/H~o and F = Y~.E=I Fj.k(O1 . . . . .  Oj-l, qSl . . . . .  ~0~-,)exp (i(Oj + qSk )) a 
complex X-valued martingale of type (2). Theorem 3' is a consequence of the 

next inequality to be shown: 

(1) F~.._s(O, ~)dOd~b --< el l  FIk~, 

where C is a numerical constant. Notice that (1) clearly implies 

(2) F,.k =< C F L'. 
j, 1 

The verification of (1) is based on the same technique as used to prove the cotype 

2 property of X. Let us denote by C various numerical constants. The main 

ingredient is the following result (see [2], Theorem 1.1): 

PROPOSITION 2. Given AEL~+(I I ) , fA=I ,  there exist A~ >= A, f A, <= C and a 

projection P from L~(A0 onto H~(A,) which is LP(A0-LP(AI ) bounded for 

1 < p < ~ and L'(AO-LJ(AO-weak bounded. 

The notation HP(/z) stands for the closure of the analytic trigonometric 

polynomials in the space LP(/z), /z = Radon probability measure on II. The 
projection P generalizes the classical Riesz projection operator. More variable 
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analogues of Proposition 2, even in a restricted sense, are known to be untrue 

(see [2], [7]). This fact is related to the failure of the (ip-Trp)-property mentioned 

in the introduction. 

The following fact follows from HP-theory or from [10] (see Theorem 1). 

LEMMA 3. If 0 < p < ~ and 

f(O, 6) = ~ f,., (0, . . . . .  0j_~, ~b, . . . .  , Ok-,) exp (i(0j + ~bk)) 

is a C-valued martingale of type (2), then 

)p 
II~ I1~. ~ cp Ill lip 

Define, with F as above, 

x, =fF~. ,  ,(O,~)dOdd/ (1 =<j =< n). 

Denote q : L'(II)---~ X the quotient-map and consider functions f / E  L '(II) with 

q(]])= xi and such that 

is minimum up to factor 2, the minimum taken over all sequences f~ . . . . .  f. of 

liftings of x, . . . . .  x.. It will be shown that 

(3) I <= c II f I1~ 

obviously implying (1). 
Define A(~) = I ~(Y. I~(sr '/2 and apply Proposition 2 yielding A, ~ A and the 

projection P. Of course, we may suppose A~ ~ 1 pointwise on H and conse- 

quently consider an outer function q~ with ]q~ I = A, on aD = 11. 

Let G be the convolution on [F  x IU of F and the scalar function 

Thus 

(4) 

and 

n 

a (0, ~)  = 2 j__~ (1 + cos (Oj + $--i))- 

II GIG ~ 2 II F IIL~ 

G(O, 0) = Xj.k Gj.k (0, . . . . .  Oj-,, 0, . . . . .  Ok-,) exp (i (0j + $~ )), where clearly 

Gjk = 0 for j + k < n and G)., j is the constant function xj. 

Fix 0 < p  < 1 and define Q = I d - P ,  vanishing on analytic trigonometric 

polynomials of mean zero. For fixed 0, ~b E IP,  we may write (with slight abuse 
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of notation) 

II G(o, ~,) IIx -- ~Hoinf, f t G(O, tO)(~)- h(~)l d~ 

inf, ( ] G(O, ~O)(~)th(~) ~ - h(~)4,(~:) '] A~(~)ds c 
h E H  0 J 

since Q satisfies Kolmogorov's theorem w.r.t, the density A~. Integration in 0, ~b 

yields by (4) 

~ O[Gj, k(O,O)eUl](~)exp(i(% +~)) 2~,(~)dOdOd~ -<-C~IIFIIL'~. 

Now for ~ fixed, the left member  is the LP-norm of a scalar martingale of type 

(2), to which Lemma 3 applies. Taking the remark on the Gj.o_j into account, as 

well as the fact that. q ( ~ ) = x j  (1 ==_j_-< n), we get 

The proof is now concluded using a standard extrapolation reasoning based on 

H61der's inequality. Take 0 < 7 < 1 satisfying 

Since for each j 

1 = (1  - "r)2 + zp. 

it follows from the definition of I that 

i o [ f ,6 - ' ]  12 ,,2 ,, ~>2 

By the L2(A~)-boundedness of O and (5), this gives 
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Since I qb ] = A, on II and A, => I '(E, I fJ 12) 1'2, it follows that 

--< 12 ) 1/2 l - r  

Tp 

I'P =< Ce It F ILL1, 

hence (3) and the theorem. 

Simple examples show that the minoration in Theorem 3' is best possible. 

REMARK. It is possible to give a more direct proof of Theorem 3', not relying 

on Proposition 2. The method is the real-variable approach presented in [9] to 

show the cotype 2 and Grothendieck property of A (D)*. 

2. Proo[ of Theorem 1" 

Let us denote (d) the statement in (1"), for simplicity. Its verification will be 

done by induction. Statement (1) was obtained in the previous section. Part of 

the argument, such as the convolution, will reappear below. 

It should be said that in fact the proof of ( d - l )  already implies the 

non-embeddability of A (Dd+l) * into A (D d)*. This is a consequence of Proposi- 

tion 1. Indeed, the continuum-direct sum in ll-sense @t,~c~Xa is a subspace of 
A (Dd+l) * and since 

A (D~)* = Xa ~ (Xa-, ~ M), 

Xa being a separable Banach space, a simple argument yields the embedding of 

Xa into Xa-1 ~ M. The latter space would therefore admit a uniformly bounded 

type (d) martingale F with p(F) > 0. But the argument proving (d - 1) works as 

well for Xd-~ ~ M, giving a contradiction. In particular Theorems 2' and 3' imply 

Theorem 1 for m, n =<3. 

The remainder of this section deals with the implication (d - 1) :ff (d). As 

said, the result is of infinite dimensional nature. 

Consider the partial order on complexes K @ Zd. defined by K < K'  provided 

k~ < k', (1 <= i <= d), K = (k~ . . . .  , kd) and K ' =  (k~ . . . .  , kS) . .  

Denote  for each s = 1 ,2 , . . .  by Rs at the 1-variable kernel on II with 

trapezoidal Fourier transform such that 

R , ( k ) = l  f o r l k l < = s ,  

/~s(k) = 0 for Ikl>-_2s. 

Hence II R,  II1 --< 3. 
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For fixed dimension d, consider the translation invariant operators 

Ps = Id - (Id' - R ~,) ~ ) . . .  ~) (id a - R ~) 

acting on any invariant space on II d. Here I~ (resp. R~) denotes the identity 

operator (resp. the R,-convolution) w.r.t, the variable ~j E II. Clearly P ~  = 0 

provided 

d 

Spec ~o c Y I { k  E Z [  Jk I_-> 2s}. 
i = l  

On the other hand, it is easily seen that each P~ maps A (D d) (resp. A (Dd) *) on 

a subspace isomorphic to A(D d-') (resp. A(Dd-I)*). 
Let 

F ( o )  = 

~+ �9 l "4- ~d+1 ~ Ak,...,k,+,(0),.. ' a~+, ~d+, ~ e x n 0 ( 0 k , + . .  " ~'kd+,)) �9 ~ O k l - I  ~ . . . ~ v l  , ' ' ' ,  O k d . 1 - 1 )  t" 
k I .... 1=1 

be a uniformly bounded A(D~)*-valued martingale of type (d + 1). We will 

show that p(F)= 0. Let us simplify notation by denoting ~ the IF-variable 0 d*' 

and (o the variable ( 0 ' , . . . ,  0 d) E f~ = I F  x �9 �9 �9 x IF. 

Rewrite F as 

F = ~ AK.k (to, ~/ , , . . . ,  ~bk-,) exp (i(oj() exp (iOk) 

where 

tot= ~ 0~,. K=(k, ..... k.). 
l~ j~d  

It is clear that for fixed k = 1 ,2 , . . . ,  the formula 

F(k)(to)= ~ (/Ar.k(co, t))d~b)exp(itor) 

defines a uniformly bounded complex martingale of type (d). Hence by a 

previous observation and the induction hypothesis, it follows that 

(1) p(P,(F'k>))=O, Vk, Vs. 

Fix some large integer n. Fact (1) allows one to introduce inductively 

complexes K, • Z~, 

(2) K, < K,-, < K,-2 < ' "  < K, 
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such that 

II e,~(xk)ll ~ 0  where xk = f Ar,.k(to, gJ)dwd~b. 

In this construction, we let k run from n up to 1. At each step, the choice of the 

integer sk depends on the elements xn, x~-~ . . . . .  xk+~ which were already ob- 

tained. More precisely, there is for each k = 1  . . . . .  n some function 

r  [[r ll--<l and ~k with finite spectrum satisfying, taking q ~ =  

- ( ' p k ) ,  

(3) (xk, ~ ;,) = �89 xk II ->- �89 ( f )  

and Sk will be chosen according to q~ . . . . . .  ~k§ The condition will appear later in 

the Rudin-Shapiro construction. 

Define again G as the convolution on lq • I F  of F and a, where 

n 

a(to, ~) = 2 ~[~_~ [1 + cos (toKk + 6k)]. 

Thus G has the form, using (2), 

G(to ,  ~b) = e x p  (i~bk) Gk, t(tor, . . . . . . .  toKk, ~bt . . . . .  I//k-l) e x p  (itor,) 
k = l  

where 

(4) Gk,~ = f AK~.k (to, ~b )dtod~b = xk. 

The reader will easily make the verification. 

Defining r / =  (rh . . . . .  ~,),  r/t = toK, ~ I I ,  G can be rewritten as 

(5) G(to, 7)  = ~ nk, qJ~ 0~-,)exp(iqJk) exp(in,). 

Also, letting X = A ( D e )  * 

(6) II a(to, n)ll  =< 211FIk . 

To minorate the left side, we construct test-functions in A (Dd), depending on 

the variables to, r/. This is achieved by a backwards (l = n , n - 1  . . . . .  1) 

Rudin-Shapiro construction, based on the functions ~0k. Define {1 
Un = ~ n e x p ( i ( n ,  + ~ ) ) ~ "  

V . = I  

and recursively 
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i 
V, = V,+~ ~neXp( i ( r / ,  +~b,))Z,<~<~#', 

where Zt+~ = Z~+~ (r/~+~ + ~bt.~ . . . . .  r/. + & )  remains to be defined. Now Zt+~ is 

uniformly bounded by 1 and depends on the functions ~ . , . . . ,  99,+1 only. Thus U,., 
V,. (m >1)  as well depend only on ~# . . . . . .  ~,+~. Therefore the integer st 
considered above can be taken such that the ~#'t-multiplication yields U~('0, 4,), 
VtO1, ~b) in A(D~). In fact, we are only interested in U,. 

From their definition, U, and V, appear as uniformly bounded complex type 
(1)-martingales in the variables 

r/. + g,., r/._, + ~b._, . . . . .  r/t +qJ,. 

Using the biorthogonality in r/, it follows by (5) and (6) that 

CIIFIILm => (<G(~,  , ) ,  U,(,7, 6 ))dTl&b 
(7) 

, 3  

' f (  Gktexp(i~bk),exp(i~h,)Z,+,(z,+,~',)dtk 
= ~ / = 1  k =1  ' 

We will now make Z H  precise. First, by successive applications of Jensen's 

inequality 

flog lV,+,ld,l' >= flog I v,+21 d~' =>... =>0 

so that e x p ( - f  log I Vt+~ Ida) defines a 1-bounded function on I-I< Take 

- -  V l + l  (8) Zt+, ]~,+~lexp(-floglV,+,ld~)exp(-iH,(loglV~+,])) 

where It is the transformation related to the space X considered in the 
introduction. Clearly ]]Zt+,(r/, ~)11~- -< 1 and a standard perturbation argument  
allows one to assume the spectrum (w.r.t. s c ~ II d) contained in some finite subset 

of Z d. The latter property holding for Ut+~, Vt+~ and since q)', has finite spectrum, 

it will still be satisfied by Ut, Vt. 
From (8) 

Vt+, = exp ( -  _I log ] V,< ]&0)exp [log ] V~+~ 1- i l l ,  (log I V,+, X)] Z,+I 

showing that scalarly, thus (Zt+lPt+~)(r;, ~0)(~) for fixed ~ ~ W, one gets an 

element  of 

a ~  (n,+, + ~0,+,) . . . . .  - (7~ + ~0o)). 
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Also, by construction 

f lt+, ~Zt+ld~O = 1. 

Therefore, the /th term in the sum (7) equals 

f(2 ) Gk.t exp (i6k),exp (i4,,)q~', d~ = (x,, q~',) = �89 x, II 
! 

by (3) and (4). We proved that 

CIIFII>= p(F). 

Since n was arbitrary, p(F) equals zero, completing the proof. 

3. Remarks and extensions of the method 

(1) The proof of Theorem 1" actually shows that there is no linear embedding 

of the (d + 1)-fold projective tensor product 

L'(n)| L'/Wo| | L'Wo 
d times 

in the space A(Dd) *. Let us mention that the non-isomorphism of the spaces 

A (D) and A ( D ) ~ )  C(I-I) was known to A. Pelczynski. Also, by the results of P. 

Wojtaszczyk (see [20]) 

I'(N) (~) L '/H:, ~- L '~Hi. 

(2) The notion of type (d)-complex martingale is closely tied up with the 

group-structure of the torus H a. It may be that related ideas permit one to solve 

the dimension conjecture for the ball algebras A(Bm). It is known that 

A(D)~A(Bm) and, from [7], also H~(D)~H~(Bm)for m >1 .  

(3) Assume U a domain of holomorphy in C% m = ml +- �9 �9 + ma, obtained as 

a product U = U1 • "-" • Ud, where each Uj is a strictly pseudoconvex bounded 

closed domain in C", with C2-smooth boundary. Let V = V1 x . . .  • Va, be 

another such domain in C"'. 

The argument presented in the previous section permits one to prove that the 

algebras A(U) and A(V) are not linearly isomorphic whenever d ~  d ' .  This 

result provides the non-isomorphism of many pairs of algebras of analytic 

functions in the same number of complex variables. 

In particular A (D " )  ~ A (B,,) if m > 1, a theorem due to G. M. Henkin [14]. 
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Also A (D 4) ~ A (B2 • B2), a result not covered by Henkin's method. In what 

follows, we briefly outline the proof of the statement. We restrict ourselves to 

Uj = Bmj, the unit ball in Cm~. The generalization to products of arbitrary strictly 

pseudoconvex domains is based on the theory developed in [15]. A detailed 

exposition of the case U = B,, can be found in [8]. 
By a recent result of A. B. Aleksandrov on the existence of inner functions [1], 

there exists q~ E H| such that ~p (0) = 0 and [ q~ [ = 1 almost everywhere on 

8Bin. The existence of inner functions for strictly pseudoconvex domains was 

proved by E. L6w [16]. Clearly the map 

! ik8 k 

k E Z  

yields an isometric embedding of L1(II)/H~o into (A(Bm))*. Consequently, if 

U = Illz~zd Bmj, there exists a uniformly bounded complex martingale F of type 

(d) ranging in A (U)* and satisfying p (F) > 0. Therefore it remains to show that 

if F is some uniformly bounded A(U)*-valued martingale of type ( d + l ) ,  

necessarily p(F) = 0. This is shown by induction on d. The argument for d = 1 is 

essentially the same as to show the implication (d) f f  (d + 1). It again uses the 

Rudin-Shapiro construction and is a straightforward adaptation of the polydisc- 

algebra proof. The reproducing kernel of A (Bin) is the Szego kernel 

K(z,~) = (1 - (z, ~))-m. 

We denote P, (0 =< r =< 1) the Poisson kernel, i.e. 

P,f(z)=[(rz) forfEL~(SBm) and z E3Bm, 

where t is the harmonic extension of [. 

Consider the operators (0 _<- r < 1) 

O, = Id - (Id ~-  P ' , )~) . . .  ~) Od d - p d) 

acting on A (U) or on A (U)*. Then, again by induction hypothesis, it is not hard 

to see that 

p(O,F~k~)=O, V k = l , 2 , . . .  and r < l .  

Thus in order to generate A (U) members with the Rudin-Shapiro construction 

it suffices to verify the property 

(.) dist ( r O d -  O,)~, A(U))---~O if r--~ 1 

uniformly for q~ in the unit-ball of A (U), for a fixed continuous function z on 
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dU. We may and will assume r of the form r(~:) = ~ 1 ( ~ 1 ) - � 9  7d(~d) where rj is a 

polynomial in zl . . . . .  zmj, ~?l . . . .  , ~?,,j for j = 1 . . . .  , d. 
At this point the strict pseudoconvexity of the domains Uj = B,,j is exploited. 

The method to show (*) is well-known. The reproducing kernel K of A (U) is the 

product K I @  . . .  @ K d. Denote [L, K] the commutator defined by 

We estimate 

(**) 

[L, Kl(f) = L(K.f)-- KL([). 

II r o d  - Q,)r  - K [ r ( I d -  O,),p] II=. 

Now (**) equals 1[ [K, rl(Id - Q,)q~ I[| and 

Again since (Id-Q,)q~ is in A(U), (**) tends to zero for r---~l since if 

s c{1,..., d}, S# 0 

,imp~, ] j~s [KJ' rJ](IdJ- P{)q~ I| =0.  

Indeed, for each ], [ E L=(aBmj) and z E OB.,j 

fo ~j(~)- Tj(z) [Ki, r j]f(z)  = lim (1 -{pz,  ~})", f(~)tr(d~), 
p~l  Bmj 

�9 (1 - ( o z ,  O )  m, r~l Bm I 

and 

{ Zj(o)-Zj(z)IO<=p<l, zEOBmj } 
(1 - (pZ,  o ) ) ' ,  

is a compact subset of L I(aB,,,). The reader will find details in [19], chapter 9. 

Knowing (*), it is easy to repeat the argument of the previous section. 
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